Cara Menyelesaikan Soal Limit Fungsi Aljabar Lengkap dengan Contoh Soal dan Pemabahaasan
Bagi adik-adik yang sedang mempelajari materi Limit, pada kesempatan ini kakak akan membahas materi tersebut. Namun, materi limit ini akan kakak bagi ke dalam 3 postingan terpisah yaitu Limit fungsi aljabar mendekati nilai tertentu, Limit fungsi trigonometri, dan Limit mendekati tak hingga. Pada postingan ini, kita akan belajar tentang limit fungsi aljabar mendekati nilai tertentu dilengkapi dengan contoh soal dan pembahasan.
Cara Menyelesaikan Limit Fungsi Aljabar
untuk menghitung nilai $\lim_{x\to a}{f(x)}$ langkah-langkahnya adalah sebagai berikut:
Pertama, substitusikan nilai $x=a$ ke dalam $f(x)$, sehingga diperoleh nilai $f(a)$. Jika $f(a)$ merupakan bentuk tentu, maka $\lim_{x\to a}{f(x)}=f(a)$
Contoh:
$\lim_{x\to 2}{\frac{x^2-4}{x^3+1}}=\frac{2^2-4}{2^3+1}=\frac{4-4}{9}=\frac{0}{9}=0$
Kedua, jika $f(a)$ merupakan bentuk tak tentu (bentuk tak tentu diantaranya : $\frac{0}{0}$, $\frac{\infty}{\infty}$, $\infty - \infty$, $0^\infty$), maka $f(x)$ harus diubah sedemikian rupa sehingga bentuk $f(a)$ merupakan bentuk tentu.
Contoh:
$\lim_{x\to 2}{\frac{x^3-4x}{x-2}}=$ .....
Soal di atas, jika kita substitusi $x=2$ maka akan kita peroleh $\frac{0}{0}$. Untuk menyelesaikannya maka kita harus merubah bentuk fungsinya terlebih dahulu, bisa dengan cara memfaktorkan atau dengan menggunakan turunan (jika telah mempelajari materi turunan)
Penyelesaian dengan cara memfaktorkan:
$\begin{align*}\lim_{x\to 2}{\frac{x^3-4x}{x-2}}&=\lim_{x\to 2}{\frac{x(x-2)(x+2)}{x-2}}\\&=\lim_{x\to 2}{x(x+2)}\\&=2(2+2)\\&=8\end{align*}$
Penyelesaian dengan menggunakan turunan:
$\lim_{x\to a}{\frac{f(a)}{g{a}}}=\lim_{x \to a}{\frac{f'(x)}{g'(x)}}$
$\begin{align*}\lim_{x\to 2}{\frac{x^3-4x}{x-2}}&=\lim_{x\to 2}{\frac{3x^2-4}{1}}\\&=\lim_{x\to 2}{3x^2-4}\\&=3(2^2)-4\\&=12-4\\&=8\end{align*}$
Sifat-sifat Limit
Jika $\lim_{x\to a}{f(x)}=F$ dan $\lim_{x\to a}{g(x)}=G$ maka:
- $\lim_{x\to a}{\left(f(x)\pm g(x)\right)}=\lim_{x\to a}{f(x)}\pm \lim_{x\to a}{g(x)}=F\pm G$
- $\lim_{x\to a}{\left(f(x).g(x)\right)}=\lim_{x\to a}{f(x)}.\lim_{x\to a}{g(x)}=F.G$
- $\lim_{x \to a}{\left(k.f(x)\right)}=k.\lim_{x\to a}{f(x)}=k.F$
- $\lim_{x\to a}{\frac{f(x)}{g(x)}}=\frac{\lim_{x\to a}{f(x)}}{\lim_{x\to a}{g(x)}}=\frac{F}{G}, G\ne 0$
- $\lim_{x\to a}{\left(f(x)\right)^n}=\left(\lim_{x\to a}{f(x)}\right)^n$
Contoh Soal dan Pembahasan :
Contoh 1
Nilai $\lim_{x\to 3}{\frac{x^2-x-6}{4-\sqrt{5x+1}}}=$ ....
A. $-8$
B. $-6$
C. $6$
D. $8$
E. $\infty$
Penyelesaian dengan cara kali sekawan:
$\begin{align*}\lim_{x\to 3}{\frac{x^2-x-6}{4-\sqrt{5x+1}}}&=\lim_{x\to 3}{\frac{x^2-x-6}{4-\sqrt{5x+1}}}\times \frac{4+\sqrt{5x+1}}{4+\sqrt{5x+1}} \\&=\lim_{x\to 3}\frac{\left ( x^2-x-6 \right )\left ( 4+\sqrt{5x+1} \right )}{4^2-\left (\sqrt{5x+1}\right )^2}\\&=\lim_{x\to3}{\frac{(x-3)(x + 2)(4+\sqrt{5x+1})}{-5x+15}}\\&=\lim_{x\to3}{\frac{(x-3)(x+2)(4+\sqrt{5x+1})}{-5(x-3)}}\\&=\lim_{x\to3}{\frac{(x+2)(4+\sqrt{5x+1})}{-5}}\\&=\frac{(3+2)(4+\sqrt{16})}{-5}\\&=-8\end{align*}$
Penyelesaian dengan menggunakan turunan (Dalil L'Hopital):
Bagi yang sudah mempelajari turunan (diferensial), menyelesaikan soal limit menggunkan turunan akan jauh lebih cepat dan efektif.
Untuk soal limit yang mengandung bentuk akar seperti soal di atas, gunakan cara cepat menurukan akar sebagai berikut:
$$f(x)=\sqrt{g(x)}\Rightarrow f'(x)=\frac{g'(x)}{2.g(x)} $$
Maka penyelesaiak soal limit di atas adalah :
$\begin{align*}\lim_{x\to 3}{\frac{x^2-x-6}{4-\sqrt{5x+1}}}&=\lim_{x\to3}{\frac{2x-1}{-\frac{5}{2\sqrt{5x+1}}}}\\ &=\frac {2(3)-1}{-\frac{5}{2\sqrt{16}}}\\&=\frac{5}{-\frac{5}{8}}\\&=-8\end{align*}$
$lim_{x\to 3}{\frac{\sqrt{6x-2}-\sqrt{3x+7}}{x-3}}=$ ....
A. $0$
B. $\frac{1}{8}$
C. $\frac{3}{8}$
D. $1$
E. $\frac{9}{8}$
Pembahasan Dengan menggunakan turunan:
$\begin{align*}\lim_{x\to 3}{\frac{\sqrt{6x-2}-\sqrt{3x+7}}{x-3}}&=\lim_{x\to 3}{\frac{\frac{6}{2\sqrt{6x-2}}-\frac{3}{2\sqrt{3x+7}}}{1}}\\&=\lim_{x\to 3}{\frac{3}{\sqrt{6x-2}}-\frac{3}{2\sqrt{3x+7}}}\\&=\frac{3}{4}-\frac{3}{8}\\&=\frac{6-3}{8}\\&=\frac{3}{8}\end{align*}$
Jika dirasa masih belum cukup jelas, silakan pelajari video berikut:
Semoga bermanfaat
Bagi yang sudah mempelajari turunan (diferensial), menyelesaikan soal limit menggunkan turunan akan jauh lebih cepat dan efektif.
Untuk soal limit yang mengandung bentuk akar seperti soal di atas, gunakan cara cepat menurukan akar sebagai berikut:
$$f(x)=\sqrt{g(x)}\Rightarrow f'(x)=\frac{g'(x)}{2.g(x)} $$
Maka penyelesaiak soal limit di atas adalah :
$\begin{align*}\lim_{x\to 3}{\frac{x^2-x-6}{4-\sqrt{5x+1}}}&=\lim_{x\to3}{\frac{2x-1}{-\frac{5}{2\sqrt{5x+1}}}}\\ &=\frac {2(3)-1}{-\frac{5}{2\sqrt{16}}}\\&=\frac{5}{-\frac{5}{8}}\\&=-8\end{align*}$
Contoh 2
$lim_{x\to 3}{\frac{\sqrt{6x-2}-\sqrt{3x+7}}{x-3}}=$ ....
A. $0$
B. $\frac{1}{8}$
C. $\frac{3}{8}$
D. $1$
E. $\frac{9}{8}$
Pembahasan Dengan menggunakan turunan:
$\begin{align*}\lim_{x\to 3}{\frac{\sqrt{6x-2}-\sqrt{3x+7}}{x-3}}&=\lim_{x\to 3}{\frac{\frac{6}{2\sqrt{6x-2}}-\frac{3}{2\sqrt{3x+7}}}{1}}\\&=\lim_{x\to 3}{\frac{3}{\sqrt{6x-2}}-\frac{3}{2\sqrt{3x+7}}}\\&=\frac{3}{4}-\frac{3}{8}\\&=\frac{6-3}{8}\\&=\frac{3}{8}\end{align*}$
Jika dirasa masih belum cukup jelas, silakan pelajari video berikut:
Semoga bermanfaat
0 Response to "Cara Menyelesaikan Soal Limit Fungsi Aljabar Lengkap dengan Contoh Soal dan Pemabahaasan"
Posting Komentar